Back to Search Start Over

The influence of imperfect accretion and radial mixing on ice:rock ratios in the Galilean satellites

Authors :
Shigeru Ida
C. A. Dwyer
Masahiro Ogihara
Francis Nimmo
Source :
Icarus. 225:390-402
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

We investigate the origin of the steep compositional gradient inferred for the Galilean satellites. We analyze N-body simulations of satellite accretion (Ogihara, M., Ida, S. [2012]. Astrophys. J. 753, 60) to: (1) determine the extent to which individual satellites accrete material from different semi-major axes (‘radial mixing’); and (2) calculate the change in rock:ice ratios due to vapor production or physical erosion during collisions. Because of inwards migration, satellites experience enough radial mixing that any initial compositional gradient is efficiently smoothed out. Mean-motion resonances generally prevent large proto-satellites from colliding with each other; as a result, neither vapor production nor physical erosion are capable of explaining the steep compositional gradient. According to the models presented here, even combining an initial compositional gradient with impact-related mass loss cannot reproduce the observed gradient. Some other physical process must have been responsible, perhaps tidally-driven volatile loss at Io and Europa. Impact-related mass loss was probably more important in the saturnian system, and may explain some of the observed satellite diversity there.

Details

ISSN :
00191035
Volume :
225
Database :
OpenAIRE
Journal :
Icarus
Accession number :
edsair.doi...........6982de891275dda6c30e3e511c1a9395
Full Text :
https://doi.org/10.1016/j.icarus.2013.03.025