Back to Search Start Over

Role of Eros, a novel transmembrane protein, in regulation of host defence

Authors :
Katherine Harcourt
Jyoti S. Choudhary
David J. Adams
Ananth Prakash
Daniel M. L. Storisteanu
Gordon Dougan
David Goulding
Shaun M. Flint
Marion Espéli
Kim Hoenderdos
James Lee
Paul A. Lyons
Leanne Kane
Edwin R. Chilvers
Yagnesh Umrania
Kenneth G. C. Smith
Simon Clare
Robin Antrobus
David C. Thomas
Jatinder K. Juss
Louise van der Weyden
Mercedes Pardo
Alex Bateman
Subhankar Mukhopadhyay
Alison M. Condliffe
John M. Sowerby
Source :
The Lancet. 387:S12
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Background Reactive oxygen species (ROS), generated via the phagocyte NADPH oxidase cytochrome b558, are essential for effective immune responses to common and serious pathogens. The phagocyte NADPH oxidase is a multisubunit protein complex and deficiency of either the membrane bound or cytoplasmic components leads to chronic granulomatous disease, a serious and often fatal illness characterised by recurrent infections and autoimmunity. Moreover, abnormal generation of ROS has been implicated in the pathogenesis of multigenic autoimmune diseases such as systemic lupus erythematosus. Eros (essential for reactive oxygen species), encoded by bc017643 , is a novel transmembrane protein that is highly expressed in the immune system and highly conserved in evolution but has no previously identified function. Eros is an orthologue of the plant protein Ycf4, necessary for expression of proteins of the photosynthetic photosystem 1 complex, an NADPH oxio-reductase complex. We elucidated its role in infection in mice. Methods ROS are essential for host defence against the serious bacterial pathogen Salmonella enterica serovar Typhimurium. We screened individual knockout mice (Wellcome Trust Knockout mouse project) for susceptibility to salmonella infection. Having identified mice deficient in Eros as being highly susceptible to salmonella, we used ex-vivo approaches including reactive oxygen burst assays and western blot, to characterise their defect further. Findings We found that Eros was essential for host defence to infection. Eros was crucial for generating reactive oxygen species through regulation of the essential NADPH oxidase components, gp91 and p22. Eros-deficient mice expressed almost no gp91 and p22 in neutrophils and macrophages secondary to accelerated degradation in the absence of Eros. As a result Eros-deficient mice died rapidly after infection with salmonella or listeria. Eros also regulated the ROS-dependent formation of neutrophil extracellular traps and melanoma metastases. Interpretation We have found a a key role for Eros in regulating host defence. The finding that Eros-deficient mice lack gp91 and p22 at the protein, though not mRNA, level shows how these key components of the reatcive oxygen burst are protected from degradation and furthers our understanding of reactive oxygen burst biology. Eros is highly conserved between mouse and man so it is likely that it also has a crucial role in human immunity. Funding Wellcome Trust, Academy of Medical Sciences starter grant.

Details

ISSN :
01406736
Volume :
387
Database :
OpenAIRE
Journal :
The Lancet
Accession number :
edsair.doi...........691d779bf5cee0e7ce12999b8b4e4776
Full Text :
https://doi.org/10.1016/s0140-6736(16)00399-8