Back to Search Start Over

LDH of NiZnFe and its composites with carbon nanotubes and data-palm biochar with efficient adsorption capacity for RB5 dye from aqueous solutions: Isotherm, kinetic, and thermodynamics studies

Authors :
Abdulrahman Ali Alazba
M. Shafiq
Muhammad Tahir Amin
Source :
Current Applied Physics. 40:90-100
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

In the study, the layered double hydroxide (LDH) of NiZnFe and its composites with date-palm biochar (LDH-DPb) and carbon nanotubes (LDH-cnt) were synthesized for adsorbing reactive black 5 (RB5) dye from aqueous solutions. In the first 5 min, rapid adsorption was followed by a gradual increase in both dye uptake and removal efficiency of up to 60 min of starting time. In the investigated pH range (3.0–8.0), the removal efficiency linearly decreased while the sorption capacity linearly increased for all three adsorbents as their doses increased to 0.3 or 0.4 g following a decreasing trend up to 0.6 g. By increasing the initial RB5 concentration from 10 to 100 mg L−1, the removal efficiency linearly decreased. A nearly perfect fitting of the pseudo-second-order kinetic model to the adsorption data was observed; however, the Elovich kinetic model showed the heterogeneous surface of adsorbents with chemisorption. At the solid–liquid interface, from a thermodynamics point of view, we obtained the nonspontaneous nature of the adsorption of RB5 dye of the studied adsorbents with an increased disorder, which supported the endothermic nature onto the studied adsorption process. Furthermore, a nearly perfect fitting of the Langmuir model was obtained to the adsorption data, thereby suggesting the monolayer adsorption of RB5 dye onto the studied adsorbents. In the Dubinin–Radushkevich model, a good agreement of the calculated adsorption capacities to the experimental values were observed and the chemical adsorption of RB5 dye on to the studied adsorbents was proposed based on E (8 – 16 kJ mol−1).

Details

ISSN :
15671739
Volume :
40
Database :
OpenAIRE
Journal :
Current Applied Physics
Accession number :
edsair.doi...........6916317cb9c7a0e522954c93954c3360