Back to Search
Start Over
Intranasal Vaccination with a Lentiviral Vector Strongly Protects against SARS-CoV-2 in Mouse and Golden Hamster Preclinical Models
- Publication Year :
- 2020
- Publisher :
- Cold Spring Harbor Laboratory, 2020.
-
Abstract
- We developed a potent vaccination strategy, based on lentiviral vector (LV), capable of inducing neutralizing antibodies specific to the Spike glycoprotein (S) of SARS-CoV-2, the etiologic agent of CoronaVirus Disease 2019 (COVID-19). Among several LV encoding distinct variants of S, a single one encoding the full-length, membrane anchored S (LV::SFL) triggered high antibody titers in mice, with neutralization activities comparable to patients recovered from COVID-19. LV::SFL systemic vaccination in mice, in which the expression of the CoV2 receptor hACE2 was induced by transduction of the respiratory tract cells by an adenoviral type 5 (Ad5) vector, despite an intense serum neutralizing activity, only ≈1 log10 reduction of lung viral loads was observed after SARS-CoV2 challenge. We thus explored the strategy of targeting the immune response to the upper respiratory tract through an intranasal boost administration. Even though, after a prime and target regimen, the systemic neutralizing activity did not increase substantially, ≈5 log10 decrease in lung viral loads was achieved, with the loads in some animals under the limit of detection of a highly sensitive RT-PCR assay. The conferred protection also avoided largely pulmonary inflammation. We confirmed the vaccine efficacy and inhibition of lung inflammation using both integrative and non-integrative LV platforms in golden hamsters, naturally permissive to SARS-CoV2 replication and restituting human COVID-19 physiopathology. Our results provide the proof-of-principle evidence of marked prophylactic effects of an LV-based vaccination strategy against SARS-CoV-2 in two pre-clinical animal models and designate the intranasal LV::SFL-based immunization as a vigorous and promising vaccine approach against COVID-19.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........69095e7f3afc59207cfefd5ea05c4759
- Full Text :
- https://doi.org/10.1101/2020.07.21.214049