Back to Search Start Over

TaffiX® nasal powder spray forms an effective barrier against infectious new variants of SARS-CoV-2 (COVID-19)

TaffiX® nasal powder spray forms an effective barrier against infectious new variants of SARS-CoV-2 (COVID-19)

Authors :
Micha Gladnikoff
Dalia Megiddo
Tair Lapidot
Nofar Atari
Yaron Drori
Michal Mandelboim
Ella Mendelson
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Introduction: While vaccination efforts against SARS-CoV-2 around the world are ongoing -, new high-infectious variants of the virus are being detected. The protection of the available vaccines against some of the new variants is weaker, and experts are concerned that newer as yet undescribed variants of this mutated RNA virus will eventually prove stable against the current vaccines. Additional preventive measures will therefore be needed to protect the population until effective vaccinations are widely available.TaffiX® is a personal, anti-viral nasal powder spray comprised of low pH Hypromellose that upon insufflation into the nose creates a thin gel layer covering the nasal mucosa and forming a protective mechanical barrier that prevents viruses from engaging with nasal cells- the main portal of entry for viruses. Taffix is commercially available in many countries across Europe, Asia America and Africa. In a prior preclinical study, TaffiX® was found to be effective against SARS-CoV-2 Hong Kong/VM20001061/2020 in experimental in vitro conditions. A real-life clinical survey demonstrated that TaffiX® nasal spray significantly reduced the SARS-CoV-2 infection rate post mass-gathering event in a highly endemic community.Objective: The current study aimed to test the protective effect of Taffix against new pathogenic, highly infectious SARS-CoV-2 variants in vitro: the “British” B.1.1.7 (hCoV-19/Israel/CVL-46879-ngs/2020) and the “South African” B.1.351 (hCoV-19/Israel/CVL-2557-ngs/2020) variants.Study design: A TaffiX® gel was formed on a nylon filter, using an amount equivalent to a clinical dose of Taffix . Filters were then seeded with SARS-CoV-2 B.1.1.7 (“British”) and B.1.351 (“South African”) variants. After a 10 -minute incubation at room temperature, the bottom of each filter was washed, and the resulting flow-through was collected and seeded into 24 -well plates containing Vero-E6 cells. After 5 days of incubation, a 200 µl sample from each well was taken for viral RNA extraction followed by SARS-CoV 2 RT-PCR analysis.Results: The TaffiX® gel completely blocked SARS-CoV-2 highly infectious variants B.1.1.7 and B.1.351 in vitro, reducing the titer of recoverable infectious virus as well as viral RNA by 100%.Conclusions: Under in vitro conditions, TaffiX® formed an effective protective barrier against SARS-COV-2 variants (British variant and South African Variant). These results are consistent with prior findings demonstrating the in vitro high efficacy of Taffix gel in preventing viruses from reaching cells and infecting them. These results, added to clinical real-life studies performed with Taffix , support its use as an effective barrier against new variants of SARS-CoV-2 in conjunction with other protective measures.

Details

ISSN :
20001061
Database :
OpenAIRE
Accession number :
edsair.doi...........67f14aa8cdbfcff20a61885e8c2336d9
Full Text :
https://doi.org/10.21203/rs.3.rs-420365/v1