Back to Search Start Over

Non-Enzymatic Remodeling of Fibrin Biopolymers via Photothermally Triggered Radical-Generating Nanoparticles

Authors :
Joan M. Walker
Jeffrey M. Zaleski
Source :
Chemistry of Materials. 26:5120-5130
Publication Year :
2014
Publisher :
American Chemical Society (ACS), 2014.

Abstract

Thrombosis is a hallmark of several chronic diseases leading to potentially fatal heart attacks and strokes. Frontline interventions include intravenous delivery of potent, enzymatic fibrinolytics that possess a high risk for inducing systemic bleeding. As a conceptual countermeasure, we have developed a water-soluble PEGylated gold nanoparticle appended with the enediyne diamine (Z)-octa-4-en-2,6-diyne-1,8-diamine that is capable of photothermally generating 1,4-diradical species under visible excitation (λ = 514 nm, 100 mW, 2–6 h). In the absence of biopolymer substrate, photothermal excitation of these particles leads to self-quenching polymer coating formation in water. When these radical-generating nanoparticles are intrinsically applied toward the blood clot structural protein assembly fibrin, as well as its nonpolymerized precursor protein fibrinogen, scanning electron microscopy images reveal significantly modified fibrin clot morphology, as evidenced by larger void spaces and collapsed fiber regi...

Details

ISSN :
15205002 and 08974756
Volume :
26
Database :
OpenAIRE
Journal :
Chemistry of Materials
Accession number :
edsair.doi...........673f4a02b00f714344960ed67a23d6a7