Back to Search
Start Over
A Weight-adaptive Algorithm of Multi Feature Fusion based on Kernel Correlation Filtering for Target Tracking
- Source :
- SPAC
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- In most correlation filter target tracking algorithms, poor accuracy in the tracking process for complex field images of the target and scale change problems. To address these issues, this paper proposes an algorithm of adaptive multi-feature fusion with scale change correlation filtering tracking. Our algorithm is based on the rapid and simple Kernel-Correlated Filtering(K CF) tracker, and achieves the complementarity among image features by fusing multiple features of Color Nmae(CN), Histogram of Oriented Gradient(HOG) and Local Binary Pattern(LBP) with weights adjusted by visual evaluation functions. The proposed algorithm introduces scale pooling and bilinear interpolation to adjust the target template size. Experiments on the OTB-2015 dataset of 100 video frames are compared with several trackers, and the precision and success ratio of our algorithm on complex scene tracking problems are 17.7% and 32.1 % respectively compared to the based-KCF.
- Subjects :
- Adaptive algorithm
Scale (ratio)
business.industry
Computer science
Local binary patterns
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Bilinear interpolation
Pattern recognition
Tracking (particle physics)
Histogram
Kernel (statistics)
Artificial intelligence
business
Interpolation
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC)
- Accession number :
- edsair.doi...........66d00980721089839239374f295836e7