Back to Search Start Over

A Comparative Study of Different Biaxial Fatigue Models

Authors :
J. Zapatero
Pablo Lopez-Crespo
B. Moreno
Source :
Key Engineering Materials. :53-56
Publication Year :
2010
Publisher :
Trans Tech Publications, Ltd., 2010.

Abstract

There are a number of theories available to model biaxial fatigue problems. Among these, the critical plane models try to predict not only the fatigue life but also the orientation of the crack or failure plane. This work attempt to analyse the biaxial tension-torsion problem from a strain-based analysis focused on plane failures predictions. Fatigue life and critical plane predictions are carried out applying multiaxial models proposed by Brown-Miller, Fatemi-Socie and Smith-Watson-Topper. The theoretical results are compared with constant amplitude test data, in-phase and out-of-phase (90˚) in a structural steel. The results suggest that Smith-Watson-Topper model predictions of fracture plane do not match the real fracture plane. The critical fracture plane predictions of the Brown-Miller and Fatemi-Socie models do not match in most cases with experimental observations either, but considering the second plane of the maximum shear strain amplitude, the predictions of the fracture plane and fatigue life improve substantially.

Details

ISSN :
16629795
Database :
OpenAIRE
Journal :
Key Engineering Materials
Accession number :
edsair.doi...........66827f3b4025aac164fb33ca06baa785
Full Text :
https://doi.org/10.4028/www.scientific.net/kem.452-453.53