Back to Search Start Over

Multifunctional Two-Dimensional PtSe2-Layer Kirigami Conductors with 2000% Stretchability and Metallic-to-Semiconducting Tunability

Authors :
Hee-Suk Chung
Sang Sub Han
Jung Han Kim
Mashiyat Sumaiya Shawkat
Gwan Hyoung Lee
Emmanuel Okogbue
Kyu Hwan Oh
Tae-Jun Ko
Yeonwoong Jung
Jong Hun Kim
Jinwoo Ma
Lei Zhai
Eunji Ji
Source :
Nano Letters. 19:7598-7607
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Two-dimensional transition-metal dichalcogenide (2D TMD) layers are highly attractive for emerging stretchable and foldable electronics owing to their extremely small thickness coupled with extraordinary electrical and optical properties. Although intrinsically large strain limits are projected in them (i.e., several times greater than silicon), integrating 2D TMDs in their pristine forms does not realize superior mechanical tolerance greatly demanded in high-end stretchable and foldable devices of unconventional form factors. In this article, we report a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored 3D structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties. We employed a concept of strain engineering inspired by an ancient paper-cutting art, known as kirigami patterning, and developed 2D TMD-based kirigami electrical conductors. Specifically, we directly integrated 2D platinum diselenide (2D PtSe2) layers of controlled carrier transport characteristics on mechanically flexible polyimide (PI) substrates by taking advantage of their low synthesis temperature. The metallic 2D PtSe2/PI kirigami patterns of optimized dimensions exhibit an extremely large stretchability of ∼2000% without compromising their intrinsic electrical conductance. They also present strain-tunable and reversible photoresponsiveness when interfaced with semiconducting carbon nanotubes (CNTs), benefiting from the formation of 2D PtSe2/CNT Schottky junctions. Moreover, kirigami field-effect transistors (FETs) employing semiconducting 2D PtSe2 layers exhibit tunable gate responses coupled with mechanical stretching upon electrolyte gating. The exclusive role of the kirigami pattern parameters in the resulting mechanoelectrical responses was also verified by a finite-element modeling (FEM) simulation. These multifunctional 2D materials in unconventional yet tailored 3D forms are believed to offer vast opportunities for emerging electronics and optoelectronics.

Details

ISSN :
15306992 and 15306984
Volume :
19
Database :
OpenAIRE
Journal :
Nano Letters
Accession number :
edsair.doi...........6636db644a00cdb5fa9a536d3b4d0a70
Full Text :
https://doi.org/10.1021/acs.nanolett.9b01726