Back to Search Start Over

Disorder, Promiscuous Interactions, and Stochasticity Regulate State Switching in the Unstable Prostate

Authors :
Robert H. Getzenberg
Prakash Kulkarni
Source :
Journal of Cellular Biochemistry. 117:2235-2240
Publication Year :
2016
Publisher :
Wiley, 2016.

Abstract

A causal link between benign prostatic hyperplasia (BPH) and prostate cancer has long been suspected but not widely accepted. A new model is proposed that supports such a connection. In contrast to the prevailing wisdom, our model, that draws on dynamical systems theory, suggests that in response to stress, epithelial cells in the unstable gland can give rise to both types of diseases via a phenotypic switching mechanism. The central idea is that phenotypic switching is a stochastic process which exploits the plasticity of the epithelial cell. It is driven by 'noise' contributed by the conformational dynamics of proteins that are intrinsically disordered. In a system that is noisy when stressed, disorder promotes promiscuity, unmasks latent information, and rewires the network to cause phenotypic switching. Cells with newly acquired phenotypes can transcend the traditional zonal boundaries to give rise to BPH or prostate cancer depending on the microenvironment. Establishing causality between the two diseases may provide us with an opportunity to better understand their etiology and guide prevention and treatment strategies. J. Cell. Biochem. 117: 2235-2240, 2016. © 2016 Wiley Periodicals, Inc.

Details

ISSN :
07302312
Volume :
117
Database :
OpenAIRE
Journal :
Journal of Cellular Biochemistry
Accession number :
edsair.doi...........6633dde9b7385be3fcbe90ba7ff22c58
Full Text :
https://doi.org/10.1002/jcb.25578