Back to Search Start Over

Low sensitivity of gross primary production to elevated CO2 in a mature Eucalypt woodland

Authors :
Jinyan Yang
Belinda E. Medlyn
Martin G. De Kauwe
Remko A. Duursma
Mingkai Jiang
Dushan Kumarathunge
Kristine Y. Crous
Teresa E. Gimeno
Agnieszka Wujeska-Klause
David S. Ellsworth
Publication Year :
2019
Publisher :
Copernicus GmbH, 2019.

Abstract

The response of mature forest ecosystems to rising atmospheric carbon dioxide concentration (Ca) is a major uncertainty in projecting the future trajectory of the Earth’s climate. Although leaf-level net photosynthesis is typically stimulated by exposure to elevated Ca (eCa), it is unclear how this stimulation translates into carbon cycle responses at whole-ecosystem scale. Here we estimate a key component of the carbon cycle, the gross primary productivity (GPP), of a mature native Eucalypt forest exposed to Free Air CO2 Enrichment (the EucFACE experiment). In this experiment, light-saturated leaf photosynthesis increased by 19 % in response to a 38 % increase in Ca. We used the process-based forest canopy model, MAESPA, to upscale these leaf-level measurements of photosynthesis with canopy structure to estimate Gross Primary Production (GPP) and its response to eCa. We assessed the direct impact of eCa, as well as the indirect effect of photosynthetic acclimation to eCa and variability among treatment plots via different model scenarios. At the canopy scale, MAESPA estimated a GPP of 1574 g C m−2 yr−1 under ambient conditions across four years and a direct increase in GPP of +11 % in response to eCa. The smaller canopy-scale response simulated by the model, as compared to the leaf-level response, could be attributed to the prevalence of RuBP-regeneration limitation of leaf photosynthesis within the canopy. Photosynthetic acclimation reduced this estimated response to 10 %. Considering variability in leaf area index across plots, we estimated a mean GPP response to eCa of 6 % with a 95 % CI of (−2 %, 14 %). These findings highlight that the GPP response of mature forests to eCa is likely to be considerably lower than the response of light-saturated leaf photosynthesis. Our results provide an important context for interpreting eCa responses of other components of the ecosystem carbon cycle.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........658d1e7a1a567fcb35538d5d4781f570