Back to Search Start Over

Responsive nanomaterials for engineering asset evaluation and condition monitoring

Authors :
Vesselin Shanov
Yeoheung Yun
Gunjan Maheshwari
Nilanjan Mallik
Mark J. Schulz
Jag Sankar
Chaminda Jayasinghe
Sergey Yarmolenko
Jandro L. Abot
Mitul Dadhania
Y. Song
Source :
Insight - Non-Destructive Testing and Condition Monitoring. 50:436-449
Publication Year :
2008
Publisher :
British Institute of Non-Destructive Testing (BINDT), 2008.

Abstract

Responsive nanomaterials are being developed through interdisciplinary research to improve and evaluate the performance of engineering assets. An overview of the work is given here. Nanomaterials are defined as bulk materials that have nanoparticle components. Responsive materials are defined as having an intrinsic ability to sense their condition and potentially respond when performance of the material is being affected or degraded. Responsive nanomaterials are a new class of material being developed by integrating nanoscale particles into host materials to provide the properties that we want. Nanomaterials can have unique combinations of properties such as a high surface area to volume ratio of the nanophase components, improved stiffness and strength, supercapacitance, electrical conductivity, magnetic properties, lightweight, photonic, and other properties. The focus of this paper is on development of responsive materials based on commercially available nanoscale materials that can be put into applications now. The nanoscale materials considered are carbon nanofibres, carbon nanosphere chains, long carbon nanotubes, and the intermediate products of these materials. Nanoengineering of multifunctional responsive materials is predicted to open up many new opportunities in the field of condition monitoring and asset evaluation, not just for structures, but also for humans, electronics, and the environment. New classes of responsive nanomaterials such as piezoresponsive, magnetoresponsive, photoresponsive, thermoresponsive and others may eventually enable the design of engineering assets that are self-monitoring and partially self-repairable, thus making high technology machines, vehicles, and structures safer for society and safeguarded against misuse.

Details

ISSN :
13542575
Volume :
50
Database :
OpenAIRE
Journal :
Insight - Non-Destructive Testing and Condition Monitoring
Accession number :
edsair.doi...........6541e11b27b7fb806d4b0584e1b969e8
Full Text :
https://doi.org/10.1784/insi.2008.50.8.436