Back to Search
Start Over
On Polyakov's notion of regular q-concave CR manifolds
- Source :
- Mathematische Zeitschrift. 253:235-249
- Publication Year :
- 2006
- Publisher :
- Springer Science and Business Media LLC, 2006.
-
Abstract
- Let M be a C∞-submanifold of codimension k in Cn , 1 ≤ k ≤ n − 1. For a ∈ M , a collection ρ = (U ; ρ1, . . . , ρk) will be called a defining collection of M at a if U ⊆ Cn is open, a ∈ U , ρ1, . . . , ρk are real C∞-functions on U , U ∩ M = { ζ ∈ U ∣ ρ1(ζ ) = . . . ρk(ζ ) = 0 } = ∅ and dρ1(ζ ) ∧ . . . ∧ dρk(ζ ) = 0 for all ζ ∈ U ∩ M . For a ∈ M , let T a (M) be the complex tangent space of M at a. We assume that M is a generic C R-submanifold of Cn which means, by definition, that
Details
- ISSN :
- 14321823 and 00255874
- Volume :
- 253
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift
- Accession number :
- edsair.doi...........653b4cd5e9dcc0c122d36735065c1327
- Full Text :
- https://doi.org/10.1007/s00209-005-0888-4