Back to Search
Start Over
Enhancing the predictive coding efficiency with control technologies for lossless compression of images
- Source :
- IET Image Processing. 6:251
- Publication Year :
- 2012
- Publisher :
- Institution of Engineering and Technology (IET), 2012.
-
Abstract
- This study applies techniques commonly used in control systems to enhance the efficiency of predictive coding in lossless compression of images for pixels around boundaries. Actually, the predictive coding system behaves just like a multi-input single-output system with the predictor itself can be regarded as the system model. Besides, the prediction error is usually feedback for the adaptation of predictor coefficients so that the prediction error of consecutive pixels can be minimised. When compared with a control system, which is to follow the system command as precisely as possible, the authors find the objective of both systems are the same. Moreover, a boundary among image pixels can be considered a step command in control systems. These observations lead to the idea of using control technologies to improve the prediction result around boundaries. To realise this idea, an adaptive Takagi-Sugeno fuzzy neural network and a proportional controller in control systems are applied as the predictor and the error compensator, respectively. To accelerate the run-time performance of the proposed system under limited resources, the online training area is even not used for network adaptation, but the performance is still comparable with state-of-the-art predictors and coders as the authors will see in the experiment.
- Subjects :
- Lossless compression
Artificial neural network
Pixel
Computer science
Proportional control
Boundary (topology)
System model
Control theory
Control system
Signal Processing
Computer Vision and Pattern Recognition
Electrical and Electronic Engineering
Adaptation (computer science)
Algorithm
Software
Subjects
Details
- ISSN :
- 17519659
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- IET Image Processing
- Accession number :
- edsair.doi...........64d490abd34c7dd037e6d865fcb09038
- Full Text :
- https://doi.org/10.1049/iet-ipr.2010.0291