Back to Search Start Over

Proof of the Erdős matching conjecture in a new range

Authors :
Peter Frankl
Source :
Israel Journal of Mathematics. 222:421-430
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Let s > k ≧ 2 be integers. It is shown that there is a positive real e = e(k) such that for all integers n satisfying (s + 1)k ≦ n < (s + 1)(k + e) every k-graph on n vertices with no more than s pairwise disjoint edges has at most $$\left( {\begin{array}{*{20}{c}} {\left( {s + 1} \right)k - 1} \\ k \end{array}} \right)$$ edges in total. This proves part of an old conjecture of Erdős.

Details

ISSN :
15658511 and 00212172
Volume :
222
Database :
OpenAIRE
Journal :
Israel Journal of Mathematics
Accession number :
edsair.doi...........64242cff556ab9eed5605839be1aa138
Full Text :
https://doi.org/10.1007/s11856-017-1595-7