Back to Search
Start Over
Proof of the Erdős matching conjecture in a new range
- Source :
- Israel Journal of Mathematics. 222:421-430
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- Let s > k ≧ 2 be integers. It is shown that there is a positive real e = e(k) such that for all integers n satisfying (s + 1)k ≦ n < (s + 1)(k + e) every k-graph on n vertices with no more than s pairwise disjoint edges has at most $$\left( {\begin{array}{*{20}{c}} {\left( {s + 1} \right)k - 1} \\ k \end{array}} \right)$$ edges in total. This proves part of an old conjecture of Erdős.
- Subjects :
- Discrete mathematics
Conjecture
Matching (graph theory)
General Mathematics
010102 general mathematics
0102 computer and information sciences
Disjoint sets
01 natural sciences
Erdős–Gyárfás conjecture
Collatz conjecture
Combinatorics
010201 computation theory & mathematics
Beal's conjecture
0101 mathematics
Erdős–Straus conjecture
Mathematics
Range (computer programming)
Subjects
Details
- ISSN :
- 15658511 and 00212172
- Volume :
- 222
- Database :
- OpenAIRE
- Journal :
- Israel Journal of Mathematics
- Accession number :
- edsair.doi...........64242cff556ab9eed5605839be1aa138
- Full Text :
- https://doi.org/10.1007/s11856-017-1595-7