Back to Search
Start Over
On the Solutions of the Causal And Anticausaln -Dimensional Diamond Operator
- Source :
- Integral Transforms and Special Functions. 13:49-57
- Publication Year :
- 2002
- Publisher :
- Informa UK Limited, 2002.
-
Abstract
- In this paper, we consider the solution of the equation \diamondsuit^{k}(P\pm i0) = \sum_{r=0}^{m} C_{r}\diamondsuit^{r}\delta where \diamondsuit^{k} is introduced and named as the Diamond operator iterated k -times and is defined by \diamondsuit^{k} = \left[\left({\partial^{2} \over \partial x_{1}^{2}}+ \cdots + {\partial^{2} \over \partial x_{p}^{2}}\right)^{2} - \left({\partial^{2} \over \partial x_{p+1}^{2}} + \cdots + {\partial^{2} \over \partial x_{p+q}^{2}}\right)^{2}\right]^{k}. Let x = (x_{1},x_{2},\ldots,x_{n}) be a point of the n -dimensional Euclidean space. Consider a non-degenerate quadratic form in n variables of the form P = P(x) = x_{1}^{2} + \cdots + x_{p}^{2} - x_{p+1}^{2} - \cdots - x_{p+q}^{2} , where p + q = n , C_{r} is a constant, \delta is the delta distribution \diamondsuit^{0}\delta =\delta and k = 0,1,\ldots. The distributions (P\pm i0)^{\lambda} are defined by (P\pm i0)^{\lambda} = \lim_{\varepsilon \rightarrow 0}\ \{P\pm i\varepsilon \vert x\vert^{2}\}^{\lambda} , where \vare...
Details
- ISSN :
- 14768291 and 10652469
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Integral Transforms and Special Functions
- Accession number :
- edsair.doi...........641e918243b45d4b9e62de0c1af0a770
- Full Text :
- https://doi.org/10.1080/10652460212894