Back to Search
Start Over
2-polyhedra for which every homotopy domination over itself is a homotopy equivalence
- Source :
- Topology and its Applications. 207:54-61
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- We consider an open question: Is it true that each homotopy domination of a polyhedron over itself is a homotopy equivalence? The answer is known to be positive for 1-dimensional polyhedra and polyhedra with virtually-polycyclic fundamental groups, so it is natural to ask about 2-dimensional polyhedra, in particular about those with solvable fundamental groups. In this paper we prove that for each 2-dimensional polyhedron P with weakly Hopfian fundamental group, every homotopy domination of P over itself is a homotopy equivalence. A group is weakly Hopfian if it is not isomorphic to a proper retract of itself. Thus every Hopfian group is weakly Hopfian. The class of Hopfian groups contains: all torsion-free hyperbolic groups, finitely generated linear groups, knot groups, limit groups, and many others. One corollary to the main result is that for 2-dimensional polyhedra with elementary amenable (including virtually-solvable) fundamental groups of finite cohomological dimension, the answer to our question is positive (we show that every elementary amenable group with finite cohomological dimension is Hopfian). The problem in consideration is related in an obvious way to the famous question of K. Borsuk (1967): Is it true that two compact ANR's homotopy dominating each other have the same homotopy type?
- Subjects :
- Fundamental group
Pure mathematics
Hyperbolic group
Homotopy
010102 general mathematics
Cohomological dimension
Mathematics::Algebraic Topology
01 natural sciences
Mathematics::Group Theory
Polyhedron
Hopfian group
Knot group
0103 physical sciences
010307 mathematical physics
Geometry and Topology
0101 mathematics
Elementary amenable group
Mathematics
Subjects
Details
- ISSN :
- 01668641
- Volume :
- 207
- Database :
- OpenAIRE
- Journal :
- Topology and its Applications
- Accession number :
- edsair.doi...........63ac1f0536b50127c4f6ea229183c40d
- Full Text :
- https://doi.org/10.1016/j.topol.2016.04.007