Back to Search
Start Over
Hausdorff dimension of divergent diagonal geodesics on product of finite-volume hyperbolic spaces
- Source :
- Ergodic Theory and Dynamical Systems. 39:1401-1439
- Publication Year :
- 2017
- Publisher :
- Cambridge University Press (CUP), 2017.
-
Abstract
- In this paper, we consider the product space of several non-compact finite-volume hyperbolic spaces, $V_{1},V_{2},\ldots ,V_{k}$ of dimension $n$. Let $\text{T}^{1}(V_{i})$ denote the unit tangent bundle of $V_{i}$ and $g_{t}$ denote the geodesic flow on $\text{T}^{1}(V_{i})$ for each $i=1,\ldots ,k$. We define $$\begin{eqnarray}{\mathcal{D}}_{k}:=\{(v_{1},\ldots ,v_{k})\,\in \,\text{T}^{1}(V_{1})\times \cdots \times \text{T}^{1}(V_{k})\,:\,(g_{t}(v_{1}),\ldots ,g_{t}(v_{k}))\text{ diverges as }t\rightarrow \infty \}.\end{eqnarray}$$ We will prove that the Hausdorff dimension of ${\mathcal{D}}_{k}$ is equal to $k(2n-1)-((n-1)/2)$. This extends a result of Cheung.
Details
- ISSN :
- 14694417 and 01433857
- Volume :
- 39
- Database :
- OpenAIRE
- Journal :
- Ergodic Theory and Dynamical Systems
- Accession number :
- edsair.doi...........633a3a5dd49dd88b622d36f2bb26e61a