Back to Search Start Over

Accurate Simulation of Non-Darcy Flow in Stimulated Fractured Shale Reservoirs

Authors :
Barry Rubin
Source :
All Days.
Publication Year :
2010
Publisher :
SPE, 2010.

Abstract

Unconventional shale gas reservoirs require stimulation via hydraulic fracturing of pre-existing fracture networks for practical exploitation, creating a stimulated reservoir volume (SRV). Within the SRV, gas flow from the nano-Darcy shale to the complex stimulated fracture network has been modeled in reservoir simulators using a variety of techniques which upscale/simplify the fracture network. The simulation techniques used in the past were normally not compared with reference solutions. This work investigates using finely-gridded single well reference solutions (approximately 6-14 million cells) for simulating Darcy and non-Darcy flow within an explicitly modeled SRV complex fracture network, in 2-D, with and without primary hydraulic fractures, as well as scenarios which model stress sensitive permeability and later re-stimulation of a horizontal well. The network fractures use cells which are only 0.001 ft. wide. The reference solutions are compared with standard dual permeability and MINC (multiple interacting continua) dual continua models as well as novel models which simulate flow inside of the SRV using coarse, logarithmically spaced, locally refined, dual permeability grids, and simulate flow outside of the SRV using unrefined dual permeability grids. These coarse models can be run in minutes on standard hardware, where as the reference models can take days to run on the same hardware. We will show that excellent matches to the reference solutions are possible using a modest number of refinements to simulate the flow within the SRV when the fracture permeability and the fracture Forchheimer number (for non-Darcy flow) are scaled as described in the paper. These techniques allow the use of 2.0 ft. wide fracture conduits to mimic non-Darcy flow in 0.001 ft. wide fractures. Good agreement between the reference and coarse models are observed even during the early flow period of the reservoir.

Details

Database :
OpenAIRE
Journal :
All Days
Accession number :
edsair.doi...........6279836daaf0547b5c3d15691ed09233
Full Text :
https://doi.org/10.2118/132093-ms