Back to Search Start Over

A Study of Write Margin of Spin Torque Transfer Magnetic Random Access Memory Technology

Authors :
Witold Kula
Terry Torng
Thomas M. Maffitt
Qiang Chen
Jonathan Z. Sun
Ruth Tong
Denny D. Tang
John K. DeBrosse
Robert Beach
Tai Min
Daniel C. Worledge
Cheng Tzong Horng
Mao-Min Chen
Po-Kang Wang
Guenole Jan
Tom Zhong
William J. Gallagher
Source :
IEEE Transactions on Magnetics. 46:2322-2327
Publication Year :
2010
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2010.

Abstract

Key design parameters of 64 Mb STT-MRAM at 90-nm technology node are discussed. A design point was developed with adequate TMR for fast read operation, enough energy barrier for data retention and against read disturbs, a write voltage satisfying the long term reliability against dielectric breakdown and a write bit error rate below 10-9. A direct experimental method was developed to determine the data retention lifetime that avoids the discrepancy in the energy barrier values obtained with spin current- and field-driven switching measurements. Other parameters detrimental to write margins such as backhopping and the existence of a low breakdown population are discussed. At low bit-error regime, new phenomenon emerges, suggestive of a bifurcation of switching modes. The dependence of the bifurcated switching threshold on write pulse width, operating temperature, junction dimensions and external field were studied. These show bifurcated switching to be strongly influenced by thermal fluctuation related to the spatially inhomogeneous free layer magnetization. An external field along easy axis direction assisting switching was shown to be effective for significantly reducing the percentage of MTJs showing bifurcated switching.

Details

ISSN :
00189464
Volume :
46
Database :
OpenAIRE
Journal :
IEEE Transactions on Magnetics
Accession number :
edsair.doi...........61d550420b7b76fa467f396372ce0db4