Back to Search Start Over

Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves

Authors :
John E. Lunn
Hans-Michael Hubberten
Melanie Höhne
Beatrice Encke
Ronan Sulpice
Alexander Ivakov
Virginie Mengin
Alison M. Smith
Sam T. Mugford
Regina Feil
Andrew J. Millar
Anna Flis
Rainer Hoefgen
Mark Stitt
Nicole Krohn
Source :
Plant, Cell & Environment. 42:549-573
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism. (a) Starch accumulation was slower in elf3 and prr7 prr9. It is proposed that ELF3 positively regulates starch accumulation. (b) Reducing sugars were high early in the T-cycle in elf3, revealing that ELF3 negatively regulates sucrose recycling. (c) The pattern of starch mobilization was modified in all five mutants. A model is proposed in which dawn and dusk/evening components interact to pace degradation to anticipated dawn. (d) An endogenous oscillation of glucose 6-phosphate revealed that the clock buffers metabolism against the large influx of carbon from photosynthesis. (e) Low levels of organic and amino acids in lhy cca1 and high levels in prr7 prr9 provide evidence that the dawn components positively regulate the accumulation of amino acid reserves.

Details

ISSN :
01407791
Volume :
42
Database :
OpenAIRE
Journal :
Plant, Cell & Environment
Accession number :
edsair.doi...........618dfa01691eee6f3830e424ba3616b7
Full Text :
https://doi.org/10.1111/pce.13440