Back to Search Start Over

JOINT CARTILAGE LUBRICATION WITH PHOSPHOLIPID BILAYER

Authors :
Krzysztof Wierzcholski
Source :
Tribologia. 266:145-157
Publication Year :
2016
Publisher :
Index Copernicus, 2016.

Abstract

The surface of an articular cartilage human joint, coated with phospholipid bilayers or multi-layers, plays an important role in the surface-active phospholipid lubrication, friction, and wear during human limb movement. The biological bi-layer is a thin polar membrane composed of two layers of phospholipids that have a hydrophilic phosphate head (from the outside) and a hydrophobic tail (from the inside) consisting of two fatty acid chains. These membranes are flat sheets that form a continuous barrier around all cells. Synovial fluid (SF) in the human joint gap contains glycoprotein, lubricin (proteinglycan 4), and hyaluronidase, i.e. an enzyme that produces hialuron acid and ±10% phospholipids. Because the mechanism of surface articular phospholipid lubrication (SAPL) has been a frequently controversial subject in the past decade, this fact requires showing the hydrodynamic description in the form of a mathematical model of the abovementioned problem and its particular solution. To give a description of this model, it is necessary to recognize the variations of the dynamic viscosity of synovial fluid as a function of parameters depending on the presence of many phospholipid particles. To these parameters belong power (exponent) concentration of hydrogen ions (pH), cartilage wet ability (We), collagen fibre concentration in synovial fluid, and a created electrostatic field on the phospholipid membrane. Based on the Young-Laplace-Kelvin Law, initial achievements presented in scientific papers and our own investigations illustrated in this paper, the decrements, and increments of synovial fluid dynamic viscosities versus pH and wet ability (We) increases, simultaneously taking into account the influence of the intensity of charges in the electrostatic field. Moreover, this study considers the influence of collagen fibre concentration on the dynamic viscosity of synovial fluid. Based on initial considerations performed by virtue of the developed SAPL, it may be stated that the charge increments from low to high values of the electrostatic field is connected with viscosity increases of synovial fluid but only simultaneously with the pH index and cartilage wet ability variations.

Details

ISSN :
1732422X and 02087774
Volume :
266
Database :
OpenAIRE
Journal :
Tribologia
Accession number :
edsair.doi...........60a6569022784da7c4c42bb78958abdb