Back to Search
Start Over
A Menon-type identity in residually finite Dedekind domains
- Source :
- Journal of Number Theory. 164:43-51
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Let φ be the Euler's totient function and σ k ( n ) = ∑ d | n d k , that is, the sum of the kth powers of the divisors of n. B. Sury showed that ∑ t 1 ∈ U ( Z n ) , t 2 , … , t r ∈ Z n gcd ( t 1 − 1 , t 2 , … , t r , n ) = φ ( n ) σ r − 1 ( n ) , where U ( Z n ) is the group of units in the ring of residual classes modulo n. Here, this identity is extended to residually finite Dedekind domains.
- Subjects :
- Discrete mathematics
Ring (mathematics)
Algebra and Number Theory
010102 general mathematics
Dedekind sum
Dedekind domain
Euler's totient function
0102 computer and information sciences
Type (model theory)
01 natural sciences
symbols.namesake
Identity (mathematics)
010201 computation theory & mathematics
symbols
Dedekind eta function
Dedekind cut
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 0022314X
- Volume :
- 164
- Database :
- OpenAIRE
- Journal :
- Journal of Number Theory
- Accession number :
- edsair.doi...........602d5bf9835741e01522627bca7930d6
- Full Text :
- https://doi.org/10.1016/j.jnt.2015.12.018