Back to Search Start Over

Hydrothermal fabrication of ZnO nanorod-based grating patterns with arrays of optical fiber cores as templates

Authors :
Han Qi
Jiafan Shi
Zhuangde Jiang
Yanyan Cheng
Kun Gao
Fan Zhou
Weixuan Jing
Source :
Superlattices and Microstructures. 82:124-135
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

A hydrothermal fabrication of ZnO nanorod-based grating patterns on Si substrates is reported. The arrays of optical fiber cores were manually assembled as templates with nominal pitches of 250 μm and 375 μm. The profiles of the templates and the grating patterns were extracted and quantitatively characterized based on micrographs of scanning electron microscopy (SEM) and Image Processing Toolbox of MATLAB. The errors of the actual pitches and the parallelism demonstrate that the process capability of manually assembling the optical fiber cores can meet the quality requirement of the templates. The critical dimensions (CDs) show that the size of the trough formed by the template and the Si substrate determines the location of the grating pattern. The characteristic parameters, including line edge roughness (LER), line width roughness (LWR), skewness (Sk), kurtosis (Ku), and correlation length (ζ), exhibit that the three-phase contact lines among the trapped air bubble, ZnO seed solution, and Si substrate (or the optical fiber core) decide the form of the grating pattern. The research found that larger nominal pitch of the template resulted in larger size of the trough which further led to less CD, and higher hydrophilicity of the Si surfaces resulted in smoother profiles whilst lower hydrophilicity of the optical fiber core surfaces led to rougher ones.

Details

ISSN :
07496036
Volume :
82
Database :
OpenAIRE
Journal :
Superlattices and Microstructures
Accession number :
edsair.doi...........5fa52934744f2032a90cae45800160a2