Back to Search Start Over

Spectral differentiation of sugarcane from weeds

Authors :
Lucas Rios do Amaral
Micael Felipe de Souza
Marcos Antonio Neris Coutinho
Camila Ferreira Netto
Stanley Robson de Medeiros Oliveira
Source :
Biosystems Engineering. 190:41-46
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Site-specific application of herbicides is highly desirable for optimising its usage and reducing environmental damages. Thus, developing techniques for identification and mapping of weeds is necessary for a proper precision agriculture adoption. Such weed identification for site-specific management is difficult when the main crop is already established in the field. This study shows the possibility of differentiating sugarcane plants from weeds by the spectral behaviour of the leaves. The performance of two modelling methods, SIMCA (soft independent modelling by class analogy) and the RF algorithm (random forest) was compared. The simplification of the Vis-NIR spectrum into only four bands of interest (500–550 nm; 650–750 nm; 1300–1450 nm; and 1800–1900 nm) was verified by demonstrating they had the same differentiation ability as the full visible-near infra-red spectrum. Thus, it was shown that performing the proper band selection and local calibration using a spectral classification approach may allow weed mapping and facilitate localised herbicide application.

Details

ISSN :
15375110
Volume :
190
Database :
OpenAIRE
Journal :
Biosystems Engineering
Accession number :
edsair.doi...........5f7beb35e1671b2b7e2a69491c47c0b9
Full Text :
https://doi.org/10.1016/j.biosystemseng.2019.11.023