Back to Search
Start Over
Comparative study of contact geometry for bottom-emitting 980-nm VCSELs
- Source :
- SPIE Proceedings.
- Publication Year :
- 2017
- Publisher :
- SPIE, 2017.
-
Abstract
- Substrate-emitting GaAs based oxide-confined 980-nm vertical-cavity surface-emitting lasers (VCSELs) with top-surface high-frequency ground-source-ground contact pads are designed, fabricated, and characterized. The devices are composed of standard top and bottom epitaxially-grown AlGaAs distributed Bragg reflectors (DBRs). The top (p)DBR is capped with p-contact Ti then Au thin-film metals for uniform current injection and laser emission is through the GaAs substrate. The devices are realized on a single epitaxial wafer with n-ohmic-contacts placed on a thick (n+)GaAs buffer layer beneath the bottom (n)DBR and alternatively with the n-ohmic-contacts placed on an (n)GaAs intra-cavity layer lying within the same bottom (n)DBR. Static device parameters including threshold current and rollover current, differential resistance, peak optical output power, and wall-plug efficiency are extracted for VCSELs with oxide-aperture diameters ranging from about 3 to 9-µm and at different temperatures. At room temperature threshold currents are achieved from the sub-mA range up to about 3.5-mA with maximum output powers exceeding 15-mW. Increasing the temperature up to 85 °C slightly increases the threshold current while the peak output power is about halved. The differential resistance at the thermal rollover current is comparable for standard and intra-cavity n-metal-contacts. Small-signal analysis is performed for different bias currents, temperatures, oxide-aperture diameters, and the two n-contact options. Under optimal bias conditions the 3-dB bandwidth exceeds 15 GHz. Direct current modulation-based on-off keying signal generation is investigated from 10 to 40-Gb/s. The influence of an anti-reflection-coated substrate, a thinned substrate, and the combination of both is investigated and discussed.
- Subjects :
- Materials science
business.industry
Contact geometry
Direct current
02 engineering and technology
Epitaxy
Laser
law.invention
Gallium arsenide
chemistry.chemical_compound
020210 optoelectronics & photonics
Optics
chemistry
law
Thermal
0202 electrical engineering, electronic engineering, information engineering
Optoelectronics
Wafer
Thin film
business
Subjects
Details
- ISSN :
- 0277786X
- Database :
- OpenAIRE
- Journal :
- SPIE Proceedings
- Accession number :
- edsair.doi...........5eff9e45ce6f5105320866ed21992d5e