Back to Search
Start Over
Optical evidence of quantum rotor orbital excitations in orthorhombic manganites
- Source :
- Journal of Experimental and Theoretical Physics. 122:890-901
- Publication Year :
- 2016
- Publisher :
- Pleiades Publishing Ltd, 2016.
-
Abstract
- In magnetic compounds with Jahn–Teller (JT) ions (such as Mn3+ or Cu2+), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO3 using ellipsometry technique. They appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals at neighboring Mn3+ ions, displaying anomalous temperature behavior around the Neel temperature T N ≈ 140 K. We present these results together with new experimental data on photoluminescence found in LaMnO3, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.
- Subjects :
- Superconductivity
Physics
Colossal magnetoresistance
Condensed matter physics
Jahn–Teller effect
General Physics and Astronomy
02 engineering and technology
Electron
021001 nanoscience & nanotechnology
01 natural sciences
Atomic orbital
Atomic electron transition
Total angular momentum quantum number
0103 physical sciences
Condensed Matter::Strongly Correlated Electrons
010306 general physics
0210 nano-technology
Ground state
Subjects
Details
- ISSN :
- 10906509 and 10637761
- Volume :
- 122
- Database :
- OpenAIRE
- Journal :
- Journal of Experimental and Theoretical Physics
- Accession number :
- edsair.doi...........5eaa268c7012d7f8c1b211a5187f7e37
- Full Text :
- https://doi.org/10.1134/s1063776116050174