Back to Search Start Over

Group-to-individual (G2i) inferences: challenges in modeling how the U.S. court system uses brain data

Authors :
Valerie Gray Hardcastle
Source :
Artificial Intelligence and Law. 28:51-68
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Regardless of formalization used, one on-going challenge for AI systems that model legal proceedings is accounting for contextual issues, particularly where judicial decisions are made in criminal cases. The law assumes a rational approach to rule application in deciding a defendant’s guilt; however, judges and juries can behave irrationally. What should a model prize: efficiency, accuracy, or fairness? Exactly whether and how to incorporate the psychology of courtroom interactions into formal models or expert systems has only just begun to be examined in a serious fashion. Here, I outline data from the United States which suggest that trying to incorporate psychological biases into formal models of legal decision-making will be challenging. I focus on the use of neuroscience data in criminal trials, homing in on so-called group-to-individual (G2i) inferences. I argue that data which should be the most effective at swaying judicial decisions are in fact those most likely not to make a difference in the disposition of the case. I conclude that judges often assign culpability by ignoring what our best science regarding how human decision-making occurs.

Details

ISSN :
15728382 and 09248463
Volume :
28
Database :
OpenAIRE
Journal :
Artificial Intelligence and Law
Accession number :
edsair.doi...........5e36ef91bc53efcfc140111a4ade5e83