A novel linearized and momentum‐preserving Fourier pseudo‐spectral scheme for the <scp>Rosenau‐Korteweg</scp> de Vries equation
MLA
Chaolong Jiang, et al. “A Novel Linearized and Momentum‐preserving Fourier Pseudo‐spectral Scheme for the Rosenau‐Korteweg de Vries Equation.” Numerical Methods for Partial Differential Equations, vol. 39, Nov. 2022, pp. 1558–82. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi...........5dd8c2c4a38183f894faac1661002b4f&authtype=sso&custid=ns315887.
APA
Chaolong Jiang, Jin Cui, Wenjun Cai, & Yushun Wang. (2022). A novel linearized and momentum‐preserving Fourier pseudo‐spectral scheme for the Rosenau‐Korteweg de Vries equation. Numerical Methods for Partial Differential Equations, 39, 1558–1582.
Chicago
Chaolong Jiang, Jin Cui, Wenjun Cai, and Yushun Wang. 2022. “A Novel Linearized and Momentum‐preserving Fourier Pseudo‐spectral Scheme for the Rosenau‐Korteweg de Vries Equation.” Numerical Methods for Partial Differential Equations 39 (November): 1558–82. http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi...........5dd8c2c4a38183f894faac1661002b4f&authtype=sso&custid=ns315887.