Back to Search Start Over

Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: The role of the air-sea interaction

Authors :
Manabu Abe
Tetsuzo Yasunari
Akio Kitoh
Masatake E. Hori
Source :
Journal of Geophysical Research: Atmospheres. 118:1760-1776
Publication Year :
2013
Publisher :
American Geophysical Union (AGU), 2013.

Abstract

[1] Using both a coupled atmosphere-ocean general circulation model (GCM) and an atmospheric GCM, we investigate the effects of the Tibetan Plateau (TP) on the onset of the South Asian summer monsoon by conducting simulations with and without the TP. In the coupled GCM, the presence of the TP causes the monsoon onset to occur approximately 15 days later in the Arabian Sea (AS) and India (ID) and approximately 10 days earlier in the Bay of Bengal (BB). These changes are attributed to different atmospheric circulation patterns and different conditions within the adjacent oceans, such as the AS and the BB. When the TP is included, lower sea surface temperatures (SSTs) in the AS contribute to a stable lower atmosphere, which suppresses convection over the AS and ID in May. In contrast, low pressure over South Asia, caused by the TP, induces a southwesterly toward the BB that transports a substantial amount of water vapor to the BB. This flow results in an earlier monsoon in the BB. Without the TP, higher SSTs that are formed in the AS in May destabilize the lower atmosphere and create a depression, resulting in an earlier onset of the monsoon over the AS and ID. Consequently, the cyclonic circulation spreads abruptly to the BB, and precipitation begins to increase over the BB. Therefore, the air-sea interaction in the adjacent ocean under the influence of the TP strongly modulates the onset of the South Asian summer monsoon. This modulation was verified by the atmospheric GCM experiments.

Details

ISSN :
2169897X
Volume :
118
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Atmospheres
Accession number :
edsair.doi...........5daade2c4360c87c266c7944279c004a
Full Text :
https://doi.org/10.1002/jgrd.50210