Back to Search Start Over

A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion

Authors :
Jong Hyeok Park
Chang-Lyoul Lee
Kyu Seung Lee
Dong Ick Son
Kyoungsik Yu
Won Kook Choi
Jung Kyu Kim
Jaeho Shim
Jun Yeon Hwang
Basavaraj Angadi
Ming Ma
Hee Yeon Yang
Source :
Nano Energy. 25:9-17
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

This work reports on the in-situ chemical synthesis and their properties of multilayer graphene (MLG) shells, made by unzipping single walled carbon nanotubes (SWCNTs), on the surface of Zinc oxide (ZnO) core nanoparticles (NPs). The stable oxygen bridge bonds between the ZnO core and the oxygen-related functional groups on the MLG shells facilitate the efficient photoinduced charge separation. This charge separation mechanism is confirmed experimentally using time-correlated single photon counting (TCSPC) measurements. The calculated average carrier lifetimes of the ZnO@MLG NPs are approximately 102 times faster than those for the bare ZnO NPs. The efficient electron transfer between the ZnO core and the MLG shell resulted in the significant improvement of the photocatalytic activity and the photoelectrochemical response. Simultaneously, the photocorrosion of ZnO was prevented by having the oxygen bridge bonds between the ZnO and MLG which suppressed the photo-generated holes oxidizing the surface oxygen atoms on ZnO, and in turn the holes are consumed by photocatalytic reaction. The 4.3 times enhanced photocurrent density at 0.2 V vs. Ag/AgCl (pH 6.9) and around 10 times higher rate constant value of photodegradation of rhodamine B were achieved by ZnO@MLG NPs in comparison with those of bare ZnO NPs.

Details

ISSN :
22112855
Volume :
25
Database :
OpenAIRE
Journal :
Nano Energy
Accession number :
edsair.doi...........5d210a33e27aeec6cf41b139401cc3a4