Back to Search
Start Over
Sacha inchi oil encapsulation: Emulsion and alginate beads characterization
- Source :
- Food and Bioproducts Processing. 116:118-129
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- The sacha inchi oil (SIO) has about 82% polyunsaturated fatty acids and micronutrients, as tocopherol and phenolic compounds. This work investigated the combination of encapsulation techniques (emulsification and ionic gelation) in order to produce food ingredients with SIO to the enrichment of foodstuffs, as well as to promote its protection against lipid oxidation. For the SIO encapsulation processes, sodium alginate and nonionic surfactants (Tween 20 and 80) were used as encapsulating/gelation and stabilizers agents, respectively. Emulsions exhibited high electronegativity (≈ −80 mV) and pseudoplastic behavior. Control emulsions showed low kinetics stability with increased oil concentration. With polysorbates addition, an increase in the stability of these emulsions and a significant decline in droplet size, span and electronegativity values were observed. Systems with 1.0 wt% Tween 20 were preferred for particles formation due to the low presence of drops agglomerates. The wet Ca (II) - alginate beads showed characteristic results of ionic gelation technique for moisture content (>85 ± 1%) and water activity (>0.996 ± 0.001), with size ranging from 407 ± 11 to 448 ± 33 μm and high encapsulation efficiency (>99%). The combination of encapsulation methods allowed the improvement of oxidative stability of SIO from 132 ± 9 meq O2. kg−1 to values lower than 44 ± 18 meq O2. kg−1.
- Subjects :
- 0106 biological sciences
chemistry.chemical_classification
Water activity
Chemistry
General Chemical Engineering
Kinetics
Ionic bonding
04 agricultural and veterinary sciences
040401 food science
01 natural sciences
Biochemistry
Polysorbates
0404 agricultural biotechnology
Lipid oxidation
Chemical engineering
010608 biotechnology
Emulsion
Tocopherol
Food Science
Biotechnology
Polyunsaturated fatty acid
Subjects
Details
- ISSN :
- 09603085
- Volume :
- 116
- Database :
- OpenAIRE
- Journal :
- Food and Bioproducts Processing
- Accession number :
- edsair.doi...........5b3b3445ae4002c9d936276766e5b4c0