Back to Search Start Over

Reaction of Li1.3Al0.3Ti1.7(PO4)3 and LiNi0.6Co0.2Mn0.2O2 in Co-Sintered Composite Cathodes for Solid-State Batteries

Authors :
Jürgen Janek
Benjamin Butz
Svenja-Katharina Otto
Jean Philippe Beaupain
Anuj Pokle
Mihails Kusnezoff
Michael Malaki
Anja Henss
Kerstin Volz
Julian Müller
Alexander Michaelis
Katja Waetzig
Source :
ACS Applied Materials & Interfaces. 13:47488-47498
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

All solid-state batteries offer the possibility of increased safety at potentially higher energy densities compared to conventional lithium-ion batteries. In an all-ceramic oxide battery, the composite cathode consists of at least one ion-conducting solid electrolyte and an active material, which are typically densified by sintering. In this study, the reaction of the solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) and the active material LiNi0.6Co0.2Mn0.2O2 (NCM622) is investigated by cosintering at temperatures between 550 and 650 °C. The characterization of the composites and the reaction layer is performed by optical dilatometry, X-ray diffractometry, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, as well as scanning transmission electron microscopy (STEM). Even at low sintering temperatures, elemental diffusion occurs between the two phases, which leads to the formation of secondary phases and decomposition reactions of the active material and the solid electrolyte. As a result, the densification of the composite is prevented and ion-conducting paths between individual particles cannot be formed. Based on the experimental results, a mechanism of the reactions in cosintered LATP and NCM622 oxide composite cathodes is suggested.

Details

ISSN :
19448252 and 19448244
Volume :
13
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi...........5aa3084970a0dd87c2c69560db36e4f2
Full Text :
https://doi.org/10.1021/acsami.1c11750