Back to Search
Start Over
Cutting planes, connectivity, and threshold logic
- Source :
- Archive for Mathematical Logic. 35:33-62
- Publication Year :
- 1996
- Publisher :
- Springer Science and Business Media LLC, 1996.
-
Abstract
- Originating from work in operations research the cutting plane refutation systemCP is an extension of resolution, where unsatisfiable propositional logic formulas in conjunctive normal form are recognized by showing the non-existence of boolean solutions to associated families of linear inequalities. Polynomial sizeCP proofs are given for the undirecteds-t connectivity principle. The subsystemsCPq ofCP, forq≥2, are shown to be polynomially equivalent toCP, thus answering problem 19 from the list of open problems of [8]. We present a normal form theorem forCP2-proofs and thereby for arbitraryCP-proofs. As a corollary, we show that the coefficients and constant terms in arbitrary cutting plane proofs may be exponentially bounded by the number of steps in the proof, at the cost of an at most polynomial increase in the number of steps in the proof. The extensionCPLE+, introduced in [9] and there shown top-simulate Frege systems, is proved to be polynomially equivalent to Frege systems. Lastly, since linear inequalities are related to threshold gates, we introduce a new threshold logic and prove a completeness theorem.
Details
- ISSN :
- 14320665 and 09335846
- Volume :
- 35
- Database :
- OpenAIRE
- Journal :
- Archive for Mathematical Logic
- Accession number :
- edsair.doi...........5a2a246f872fcef26810626620b54d38