Back to Search Start Over

Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus)

Authors :
Nathaniel J. Dominy
Brooke E. Crowley
Laurie R. Godfrey
Summer J. Arrigo-Nelson
Sarah Zohdy
Emilienne Rasoazanabary
Paul L. Koch
Erin R. Vogel
Keriann C. McGoogan
Meredith A. Barrett
Sandra Thorén
Mitchell T. Irwin
Ute Radespiel
Patricia C. Wright
Marina B. Blanco
Source :
Journal of Biogeography. 38:2106-2121
Publication Year :
2011
Publisher :
Wiley, 2011.

Abstract

Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0&; nitrogen 10.5–11.0&). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0& ;n itrogen 5.9 &) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values inMicrocebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities.

Details

ISSN :
03050270
Volume :
38
Database :
OpenAIRE
Journal :
Journal of Biogeography
Accession number :
edsair.doi...........5a0fe15a3254d2ed625ce9b5f8594f63
Full Text :
https://doi.org/10.1111/j.1365-2699.2011.02551.x