Back to Search Start Over

A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology

Authors :
Joergen Christensen-Dalsgaard
Michael Thompson
Matthias Rempel
Mário J. P. F. G. Monteiro
Source :
Monthly Notices of the Royal Astronomical Society. 414:1158-1174
Publication Year :
2011
Publisher :
Oxford University Press (OUP), 2011.

Abstract

The stratification near the base of the Sun's convective envelope is governed by processes of convective overshooting and element diffusion, and the region is widely believed to play a key role in the solar dynamo. The stratification in that region gives rise to a characteristic signal in the frequencies of solar p modes, which has been used to determine the depth of the solar convection zone and to investigate the extent of convective overshoot. Previous helioseismic investigations have shown that the Sun's spherically symmetric stratification in this region is smoother than that in a standard solar model without overshooting, and have ruled out simple models incorporating overshooting, which extend the region of adiabatic stratification and have a more-or-less abrupt transition to subadiabatic stratification at the edge of the overshoot region. In this paper we consider physically motivated models which have a smooth transition in stratification bridging the region from the lower convection zone to the radiative interior beneath. We find that such a model is in better agreement with the helioseismic data than a standard solar model.

Details

ISSN :
00358711
Volume :
414
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi...........595eb7ecd1b2480146cf736e29a399a7
Full Text :
https://doi.org/10.1111/j.1365-2966.2011.18460.x