Back to Search Start Over

Understanding Kinematics of the Orthogonal Cutting Using Digital Image Correlation—Measurement and Analysis

Authors :
Markus Meurer
Han Ding
Dong Zhang
Xiao-Ming Zhang
Thomas Bergs
Source :
Journal of Manufacturing Science and Engineering. 144
Publication Year :
2021
Publisher :
ASME International, 2021.

Abstract

With the development of advanced image correlation and high-speed filming techniques, the kinematic field during the cutting process can be experimentally determined including the velocity and strain rate fields. As known, the setting parameters for the digital image correlation (DIC) as well as the optical parameters of the given camera and lighting system have a great influence on the spatial resolution and accuracy of the DIC results. In this study, the speckle pattern in terms of speckle size and intensity distribution are analyzed when using two different surface preparation methods. Moreover, the influences of the subset sizes for the image correlation on the strain rate are numerically studied. Interlaboratory measurements of the kinematic field during the orthogonal cutting of AISI 4140 were conducted with two different in-situ imaging setups. The material flow near the cutting tool edge determined from the velocity field is compared with the numerical simulation. The stagnation zone which is commonly found in the numerical simulation of the cutting process using a chamfered cubic boron nitride (CBN) tool was not observed in the experiments. Furthermore, slip-line fields were constructed from the experimentally determined strain rate components, from which the boundary conditions along the chip-free and chip-tool interface were derived.

Details

ISSN :
15288935 and 10871357
Volume :
144
Database :
OpenAIRE
Journal :
Journal of Manufacturing Science and Engineering
Accession number :
edsair.doi...........58008a73cdd0c91b6ea8b4125f5b8dc9