Back to Search Start Over

Effects of residual strain on deformation processes of neutron-irradiated TiNi and TiPd shape memory alloys

Authors :
Taiji Hoshiya
Hajime Sekino
Yoshinori Matsui
Fumio Sakurai
Kazuyuki Enami
Source :
Journal of Nuclear Materials. :599-603
Publication Year :
1996
Publisher :
Elsevier BV, 1996.

Abstract

TiNi and TiPd shape memory alloys (SMA) reveals good workability and shape memory properties and these SMAs seem to be one of hopeful functional materials in a severe irradiation field. The effects of irradiation induced residual strain on the deformation processes of TiNi and TiPd SMAs after neutron irradiation with fluences ( E > 1 MeV) up to 3.9 × 10 24 m −2 at Japan Materials Testing Reactor (JMTR) were investigated by the remote controlled X-ray diffraction measurement. Residual strains of TiNi SMAs took place over damage of 0.1 dpa and the strains were not completely removed by post-irradiation annealing at 473, 523 and 573 K. On the other hand, residual strains of TiPd SMAs scarcely occurred after irradiation, and furthermore, the TiPd SMA seems to be an irradiation-resistant material. This may be explained by a difference between the irradiation response of a parent phase and that of a martensitic phase to neutron irradiation. Deformation processes of SMAs are associated with stress fields generated by irradiation in a parent phase with B2 type ordered structure or in a martensitic phase with 2H and 9R type close-packed structures.

Details

ISSN :
00223115
Database :
OpenAIRE
Journal :
Journal of Nuclear Materials
Accession number :
edsair.doi...........571f4b7d940719fa84971da120e4a482
Full Text :
https://doi.org/10.1016/0022-3115(95)00170-0