Back to Search Start Over

Secondary structure of the mRNA encoding listeriolysin O is essential to establish the replicative niche of L. monocytogenes

Authors :
Jonathan L. Portman
Daniel A. Portnoy
Bret N. Peterson
Ying Feng
Jeffrey C. Wang
Source :
Proceedings of the National Academy of Sciences. 117:23774-23781
Publication Year :
2020
Publisher :
Proceedings of the National Academy of Sciences, 2020.

Abstract

Intracellular pathogens are responsible for an enormous amount of worldwide morbidity and mortality, and each has evolved specialized strategies to establish and maintain their replicative niche. Listeria monocytogenes is a facultative intracellular pathogen that secretes a pore-forming cytolysin called listeriolysin O (LLO), which disrupts the phagosomal membrane and, thereby, allows the bacteria access to their replicative niche in the cytosol. Nonsynonymous and synonymous mutations in a PEST-like domain near the LLO N terminus cause enhanced LLO translation during intracellular growth, leading to host cell death and loss of virulence. Here, we explore the mechanism of translational control and show that there is extensive codon restriction within the PEST-encoding region of the LLO messenger RNA (mRNA) (hly). This region has considerable complementarity with the 5' UTR and is predicted to form an extensive secondary structure that overlaps the ribosome binding site. Analysis of both 5' UTR and synonymous mutations in the PEST-like domain that are predicted to disrupt the secondary structure resulted in up to a 10,000-fold drop in virulence during mouse infection, while compensatory double mutants restored virulence to WT levels. We showed by dynamic protein radiolabeling that LLO synthesis was growth phase-dependent. These data provide a mechanism to explain how the bacteria regulate translation of LLO to promote translation during starvation in a phagosome while repressing it during growth in the cytosol. These studies also provide a molecular explanation for codon bias at the 5' end of this essential determinant of pathogenesis.

Details

ISSN :
10916490 and 00278424
Volume :
117
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi...........563ed55f1496fefc65ace205199d9b91