Back to Search Start Over

Thin-film polycrystalline silicon solar cells with low intragrain defect density made via laser crystallization and epitaxial growth

Authors :
Yu Qiu
Dries Van Gestel
Ivan Gordon
James S. Im
Monica Chahal
Paul C. van der Wilt
Jef Poortmans
Source :
2010 35th IEEE Photovoltaic Specialists Conference.
Publication Year :
2010
Publisher :
IEEE, 2010.

Abstract

The case for thin-film polycrystalline silicon (pc-Si) solar cells is strong as it combines the cost benefit of thin-films and the quality potential of crystalline Si technology. The challenge is in making high-quality pc-Si layers on non-Si substrates. By studying layers based on aluminum-induced crystallization (AIC) we previously showed that electrically active intragrain defects are a major limiting factor for thin-film polycrystalline silicon solar cells. This paper investigates the use of a recently proposed novel scanning-laser based mixed-phase solidification (MPS) process which results in large grains with a low intragrain defect density, as well as a narrow grain size distribution and strong surface crystallographic texture [6]. Through subsequent epitaxial growth, absorber layers with the desired doping and thickness can be obtained. Defect etching and TEM measurements demonstrate the drastically decreased intragrain defect density compared to the AIC-based samples. The most efficient solar cell so far has an energy conversion efficiency of 5.4% and open circuit voltage (V oc ) of around 500mV. From the preliminary results obtained, we conclude that mixed phase solidification is an attractive technique to crystallize seed layers for thin-film silicon solar cells.

Details

Database :
OpenAIRE
Journal :
2010 35th IEEE Photovoltaic Specialists Conference
Accession number :
edsair.doi...........560b85fb9f401313254da466be494802
Full Text :
https://doi.org/10.1109/pvsc.2010.5615848