Back to Search Start Over

First-principles studies of the ∑5 tilt grain boundary inNi3Al

Authors :
R. Wu
Mikael Ciftan
Nicholas Kioussis
Gang Lu
Source :
Physical Review B. 59:891-898
Publication Year :
1999
Publisher :
American Physical Society (APS), 1999.

Abstract

The atomic and the electronic structures of the \ensuremath{\sum}5 (210) [001] tilt grain boundary in ${\mathrm{Ni}}_{3}\mathrm{Al},$ with and without a hydrogen impurity, have been calculated using the full potential linearized-augmented plane-wave method. The strain field normal to the boundary plane and the excess grain boundary volume are calculated and compared with the results obtained using the embedded-atom method (EAM). The interlayer strain normal to the grain boundary oscillates with increasing distance from the grain boundary. The bonding charge distributions suggest that bonding in the boundary region is different from that in the bulk. Total-energy calculations show that the hydrogen impurity prefers to occupy interstitial sites on the Ni-rich grain boundary plane. Hydrogen is found to reduce the bonding charge across the boundary plane. The grain boundary energy and the Griffith cohesive energy for both the ``clean'' and H-segregated grain boundary are calculated and compared with the available EAM results. The hydrogen impurity is found to increase the grain boundary energy and reduce the Griffith cohesive energy of the boundary, which indicates that hydrogen is an embrittler of the grain boundary.

Details

ISSN :
10953795 and 01631829
Volume :
59
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi...........55c906f913054ceea4d6fca9a17c9159