Back to Search Start Over

Self-sacrificing template synthesis of CdS quantum dots/Cd-Hap composite photocatalysts for excellent H2 production under visible light

Authors :
Wenfei Guan
Zheng Qiao
Zaiyong Jiang
Tingjiang Yan
Baibiao Huang
Na Li
Source :
International Journal of Hydrogen Energy. 43:20616-20626
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Well dispersive CdS quantum dots (QDs) were successfully in-situ grown on cadmium hydroxyapatite (Cd5(PO4)3OH, Cd-Hap) assembled rods through a self-sacrificing hydrothermal method. No any nocuous organic ligands were used in such self-sacrificing route, allowing for a green approach to prepare CdS QDs with clean surfaces and enough active sites. The deposition of CdS QDs onto Cd-Hap surfaces led to a dramatically enhanced performance in H2 production under visible light irradiation as compared to bulk CdS nanoparticles. The optimal CdS QDs/Cd-Hap composite displayed a H2 evolution rate of 14.1 μmol h−1 without using any noble metal cocatalyst, which was about 4.2 times higher than that of pristine CdS. The apparent quantum efficiency for CdS QDs/Cd-Hap composite was up to 18%. It was also found that CdS QDs/Cd-Hap composite can continuously generate H2 from water in the presence of electron donors for more than 125 h. The enhanced photocatalytic performance of CdS QDs/Cd-Hap composites could be attributed to the high charge separation efficiency resulting from the efficient capture of photoinduced electrons by oxygen vacancies in Cd-Hap rods and the quantum confinement effect of CdS QDs with strong redox capacity as well as the increased active sites.

Details

ISSN :
03603199
Volume :
43
Database :
OpenAIRE
Journal :
International Journal of Hydrogen Energy
Accession number :
edsair.doi...........556b6b3aee7923addf1c089b85d9fde4