Back to Search
Start Over
Integrated optical nanostructures for wide-angle antireflection and light trapping in III/V solar cells
- Source :
- 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).
- Publication Year :
- 2014
- Publisher :
- IEEE, 2014.
-
Abstract
- The use of subwavelength-scale dielectric nanostructures for both reduced surface and interface reflectance and long-wavelength light trapping in III/V thin-film solar cells is demonstrated and characterized. Antireflection coatings incorporating submicron pyramidal “nanoislands” are fabricated on GaAs thin-film solar cells using a low-cost nanosphere lithography (NSL) process, and shown to improve external quantum efficiency (E.Q.E.) compared to that achieved using a thin-film planar Al 2 O 3 /TiO 2 antireflection coating, with the largest improvements occurring for large angles of incidence. Such structures are also shown to enable, simultaneously, reduced surface reflectance and long-wavelength light trapping, as demonstrated in GaAs/InGaAs quantum well solar cells. Finally, the simultaneous use of subwavelength “moth-eye” structures fabricated in polymer packaging material using NSL and solar cell antireflection structures incorporating dielectric “nanoislands” is demonstrated and analyzed, enabling increases in short-circuit current density of ∼1.1× to 1.67×, depending on angle of incidence, compared to structures using conventional two-layer thin-film antireflection coatings and unpatterned polymer packaging.
Details
- Database :
- OpenAIRE
- Journal :
- 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
- Accession number :
- edsair.doi...........555bc54b5f85c2645e522ae79729b550
- Full Text :
- https://doi.org/10.1109/pvsc.2014.6925371