Back to Search Start Over

Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

Authors :
Altincekic, Nadide
Korn, Sophie Marianne
Qureshi, Nusrat Shahin
Dujardin, Marie
Ninot-Pedrosa, Martí
Abele, Rupert
Abi Saad, Marie Jose
Alfano, Caterina
Almeida, Fabio C. L.
Alshamleh, Islam
De Amorim, Gisele Cardoso
Anderson, Thomas K.
Anobom, Cristiane D.
Anorma, Chelsea
Bains, Jasleen Kaur
Bax, Adriaan
Blackledge, Martin
Blechar, Julius
Böckmann, Anja
Brigandat, Louis
Bula, Anna
Bütikofer, Matthias
Camacho-Zarco, Aldo R.
Carlomagno, Teresa
Caruso, Icaro Putinhon
Ceylan, Betül
Chaikuad, Apirat
Chu, Feixia
Cole, Laura
Crosby, Marquise G.
De Jesus, Vanessa
Dhamotharan, Karthikeyan
Felli, Isabella C.
Ferner, Jan
Fleischmann, Yanick
Fogeron, Marie-Laure
Fourkiotis, Nikolaos K.
Fuks, Christin
Fürtig, Boris
Gallo, Angelo
Gande, Santosh L.
Gerez, Juan Atilio
Ghosh, Dhiman
Gomes-Neto, Francisco
Gorbatyuk, Oksana
Guseva, Serafima
Hacker, Carolin
Häfner, Sabine
Hao, Bing
Hargittay, Bruno
Henzler-Wildman, K.
Hoch, Jeffrey C.
Hohmann, Katharina F.
Hutchison, Marie T.
Jaudzems, Kristaps
Jović, Katarina
Kaderli, Janina
Kalniņš, Gints
Kaņepe, Iveta
Kirchdoerfer, Robert N.
Kirkpatrick, John
Knapp, Stefan
Krishnathas, Robin
Kutz, Felicitas
Zur Lage, Susanne
Lambertz, Roderick
Lang, Andras
Laurents, Douglas
Lecoq, Lauriane
Linhard, Verena
Löhr, Frank
Malki, Anas
Bessa, Luiza Mamigonian
Martin, Rachel W.
Matzel, Tobias
Maurin, Damien
McNutt, Seth W.
Mebus-Antunes, Nathane Cunha
Meier, Beat H.
Meiser, Nathalie
Mompeán, Miguel
Monaca, Elisa
Montserret, Roland
Mariño Perez, Laura
Moser, Celine
Muhle-Goll, Claudia
Neves-Martins, Thais Cristtina
Ni, Xiamonin
Norton-Baker, Brenna
Pierattelli, Roberta
Pontoriero, Letizia
Pustovalova, Yulia
Ohlenschläger, Oliver
Orts, Julien
Da Poian, Andrea T.
Pyper, Dennis J.
Richter, Christian
Riek, Roland
Rienstra, Chad M.
Robertson, Angus
Pinheiro, Anderson S.
Sabbatella, Raffaele
Salvi, Nicola
Saxena, Krishna
Schulte, Linda
Schiavina, Marco
Schwalbe, Harald
Silber, Mara
Almeida, Marcius Da Silva
Sprague-Piercy, Marc A.
Spyroulias, Georgios A.
Sreeramulu, Sridhar
Tants, Jan-Niklas
Tārs, Kaspars
Torres, Felix
Töws, Sabrina
Treviño, Miguel Á.
Trucks, Sven
Tsika, Aikaterini C.
Varga, Krisztina
Wang, Ying
Weber, Marco E.
Weigand, Julia E.
Wiedemann, Christoph
Wirmer-Bartoschek, Julia
Wirtz Martin, Maria Alexandra
Zehnder, Johannes
Hengesbach, Martin
Schlundt, Andreas
Publisher :
Frontiers Media

Abstract

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi...........5529d8e7fcac9fd21390c0b8b064581a