Back to Search
Start Over
Simple Paper-based Liver Cell Model for Drug Screening
- Source :
- BioChip Journal. 14:218-229
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Investigation of the potential adverse effects of chemicals and drugs is essential during the drug development process. In vitro cell model systems have been developed over the past years towards such toxicity investigation. 96-well plate is the common platform for screening drug toxicity due to its simplicity. However, this platform only offers 2D cell culture environment and lacks the flow of solutions, which fails to provide the suitable environment for the cells to adequately metabolize the drugs, for the media to replenish, and for the metabolites and wastes to be removed. Microfluidic chips populated with human or animal cells, known as organ-on-a-chip (OOC), can reconcile many issues of in vitro cell models, such as the lack of extracellular matrix and flow as well as the species difference. However, OOC can be complicated to fabricate and operate. To bridge this gap, we utilized paper as a primary substrate for OOC, considering its fibrous structure that can mimic natural extracellular matrix, as well as a syringe pump and filter that are commonly available in most laboratories. Paper microfluidic model was designed and fabricated by wax printing on nitrocellulose paper, seeded and proliferated with liver cells (primary rat hepatocytes and HepG2 cells), and two paper substrates were stacked together to complete the paper model. To this paper-based liver cell model, the following drugs were added: Phenacetin (pain reliever and fever reducer), Bupropion (antidepressant), Dextromethorphan (antidepressant), and phosphate-buffered saline (PBS) as a control, all under a physiologically relevant flow rate. The combination of these drugs with Fluconazole (antifungal drug) was also investigated. Cell count, cell morphology, protein production, and urea secretion after drug treatment confirmed that the model successfully predicted toxicity within 40 minutes. This simple, paper-based liver cell model provided enhanced and faster cell response to drug toxicity and showed comparable or better behavior than the cells cultured in conventional 2D in vitro models.
- Subjects :
- Drug
Chemistry
Liver cell
media_common.quotation_subject
010401 analytical chemistry
Biomedical Engineering
Antifungal drug
Bioengineering
02 engineering and technology
Pharmacology
021001 nanoscience & nanotechnology
Cell morphology
01 natural sciences
Organ-on-a-chip
0104 chemical sciences
Drug development
Cell culture
Toxicity
Electrical and Electronic Engineering
0210 nano-technology
Biotechnology
media_common
Subjects
Details
- ISSN :
- 20927843 and 19760280
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- BioChip Journal
- Accession number :
- edsair.doi...........5448357484b9b585344c032613935fb2
- Full Text :
- https://doi.org/10.1007/s13206-020-4211-6