Back to Search Start Over

Numerical Simulation and Experimental Investigation of Nitrogen Transfer Mechanism from Gas to Liquid Steel During Pressurized Electroslag Remelting Process

Authors :
Liu Fubin
Yang Li
Wenchao Zhang
Hao Feng
Zhouhua Jiang
Huabing Li
Jia Yu
Congpeng Kang
Ao Wang
Source :
Metallurgical and Materials Transactions B. 50:3112-3124
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Since the gas–slag–metal three-phase transfer mechanism of nitrogen is not suitable to account for the nitrogen pickup during pressurized electroslag remelting process, the laboratory experiments have been carried out to study the transfer mechanism of nitrogen using different nitrogen partial pressures and electrode immersion depths. Then, two possible transfer mechanisms of nitrogen have been proposed, and a 2D transient numerical model has been developed to investigate the behavior of nitrogen based on the new proposed mechanisms. The simulated results are compared with the experiment to validate the feasibility of new proposed mechanism. The results show that the nitrogen content in ingot increases with the increasing nitrogen partial pressure and decreasing electrode immersion depth. At the current experimental condition, the electrode immersion depth seems to play a more important role in the nitrogen pickup than the nitrogen partial pressure. Due to the limits of thermodynamic and kinetic conditions, the nitrogen pickup is negligible via the transfer from gas to liquid metal through molten slag whether nitrogen chemically or physically dissolves into slag. The mechanism that nitrogen directly reacts with the partially exposed liquid metal film under the electrode tip due to the fluctuation of gas/slag interface could reasonably account for the experimental results. Furthermore, based on the mechanism, the predicted variation tendency of nitrogen content in ingot is in agreement with the experiment.

Details

ISSN :
15431916 and 10735615
Volume :
50
Database :
OpenAIRE
Journal :
Metallurgical and Materials Transactions B
Accession number :
edsair.doi...........52e007ad0c89051b867ead066552d288