Back to Search Start Over

MnB2 nanosheet and nanotube: stability, electronic structures, novel functionalization and application for Li-ion batteries

Authors :
Qinfang Zhang
Baolin Wang
Jianfei Gu
Lele Fan
Bingwen Zhang
Jingsan Hu
Source :
Nanoscale. 11:7857-7865
Publication Year :
2019
Publisher :
Royal Society of Chemistry (RSC), 2019.

Abstract

In this paper, two kinds of two-dimensional manganese boride monolayers, h-MnB2 and t-MnB2, are predicted to be stable metallic nanosheets, which exhibit favorable mechanical and thermal properties. The Young's moduli of h-MnB2 and t-MnB2 are 77.73 N m-1 and 59.59 N m-1, respectively. Ab initio molecular dynamics results show that h-MnB2 and t-MnB2 can sustain up to 500 K and 1000 K, respectively. The magnetic property of h-MnB2 is frustrated antiferromagnetic with a Neel temperature of about 25 K, and the magnetic property of t-MnB2 is collinear antiferromagnetic with a Neel temperature of about 317 K. In addition, the electronic structure of the h-MnB2 monolayer can be tuned by passivation to exhibit Dirac states. h-MnB2 can also self-assemble to form nanotubes, and is thus very promising for application as the anode for Li-ion batteries because of its high capacity (about 875 mA h g-1), low diffusion barrier (about 0.03 eV) and strong stability.

Details

ISSN :
20403372 and 20403364
Volume :
11
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi...........52b91279fcd02a8baa0ecfa9b9cb28bb
Full Text :
https://doi.org/10.1039/c9nr00952c