Back to Search
Start Over
Toward a Subjective Assessment System for Closed Captioning Quality
- Source :
- SMPTE Motion Imaging Journal. 130:35-44
- Publication Year :
- 2021
- Publisher :
- Society of Motion Picture and Television Engineers (SMPTE), 2021.
-
Abstract
- A novel quality assessment system design for closed captioning (CC) is proposed. CC was originally designed to serve hearing-impaired audiences. Traditional quality assessment models focus on empirical methods only, measuring quantitative accuracy by counting the number of word errors in the captions for a segment. However, hearing-impaired audiences have been outspoken about their dissatisfaction with the quality of current CC. One solution to this problem may involve inviting human evaluators, who represent different groups, to assess the quality of CC at the end of each segment, but in reality, this may be difficult to do and very labor-intensive. To solve this challenge, we propose the training and use of an artificial intelligence system to predict subjective CC quality based on human assessment data. In this paper, the design and development process, to be used in developing this system, is described .
- Subjects :
- Closed captioning
Focus (computing)
Artificial Intelligence System
Process (engineering)
Computer science
media_common.quotation_subject
Empirical research
Human–computer interaction
Media Technology
Systems design
Quality (business)
Electrical and Electronic Engineering
Word (computer architecture)
media_common
Subjects
Details
- ISSN :
- 21602492 and 15450279
- Volume :
- 130
- Database :
- OpenAIRE
- Journal :
- SMPTE Motion Imaging Journal
- Accession number :
- edsair.doi...........52a8543255e8c0cf9dd34df894a107d3
- Full Text :
- https://doi.org/10.5594/jmi.2021.3059344