Back to Search
Start Over
Thermal rectification on asymmetric suspended graphene nanomesh devices
- Source :
- Nano Futures. 5:045002
- Publication Year :
- 2021
- Publisher :
- IOP Publishing, 2021.
-
Abstract
- Graphene-based thermal rectification was investigated by measuring the thermal transport properties of asymmetric suspended graphene nanomesh devices. A sub-10 nm periodic nanopore phononic crystal structure was successfully patterned on the half area of the suspended graphene ribbon by helium ion beam milling technology. The ‘differential thermal leakage’ method was developed for thermal transport measurement without disturbance from the leakage of electron current through the suspended graphene bridge. A thermal rectification ratio of up to 60% was observed in a typical device with a nanopore pitch of 20 nm. By increasing the nanopore pitch in a particular range, the thermal rectification ratio showed an increment. However, this ratio was degraded by increasing the environmental temperature. This experiment suggests a promising way to develop a high-performance thermal rectifier by using a phononic crystal to introduce asymmetry on homogeneous material.
- Subjects :
- Materials science
Graphene
business.industry
Biomedical Engineering
Bioengineering
General Chemistry
Atomic and Molecular Physics, and Optics
law.invention
chemistry.chemical_compound
Nanomesh
chemistry
law
Optoelectronics
General Materials Science
Thermal rectification
Electrical and Electronic Engineering
business
Subjects
Details
- ISSN :
- 23991984
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- Nano Futures
- Accession number :
- edsair.doi...........523e9ab9c631e3a63405391c29e6e040
- Full Text :
- https://doi.org/10.1088/2399-1984/ac36b5