Back to Search
Start Over
A Multiscale Simulation Approach for the Mechanical Response of Copper/Nickel Nanofoams With Experimental Validation
A Multiscale Simulation Approach for the Mechanical Response of Copper/Nickel Nanofoams With Experimental Validation
- Source :
- Journal of Engineering Materials and Technology. 144
- Publication Year :
- 2021
- Publisher :
- ASME International, 2021.
-
Abstract
- Metallic nanofoams, cellular structures consisting of interlinked thin nanowires and empty pores, create low density, high surface area materials. These structures can suffer from macroscopically brittle behavior. In this work, we present a multiscale approach to study and explain the mechanical behavior of metallic nanofoams obtained by an electrospinning method. In this multiscale approach, atomistic simulations were first used to obtain the yield surfaces of different metallic nanofoam cell structures. Then, a continuum plasticity model using finite elements was used to predict the alloy nanofoam's overall strength in compression. The manufactured metallic nanofoams were produced by electrospinning a polymeric non-woven fabric containing metal precursors for alloys of copper–nickel and then thermally processing the fabric to create alloy metallic nanofoams. The nanofoams were tested with nanoindentation. The experimental results suggest that the addition of nickel increases the hardening of the nanofoams. The multiscale simulation modeling results agreed qualitatively with the experiments by suggesting that the addition of the alloying can be beneficial to the hardening behavior of the metallic nanofoams and helps to isolate the effects of alloying from morphological changes in the foam. This behavior was related to the addition of solute atoms that prevent the free dislocation movement and increase the strength of the structure.
- Subjects :
- 010302 applied physics
Yield (engineering)
Materials science
Mechanical Engineering
Alloy
Nanowire
02 engineering and technology
engineering.material
Plasticity
Nanoindentation
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
Electrospinning
Mechanics of Materials
0103 physical sciences
engineering
Hardening (metallurgy)
General Materials Science
Composite material
0210 nano-technology
Nanofoam
Subjects
Details
- ISSN :
- 15288889 and 00944289
- Volume :
- 144
- Database :
- OpenAIRE
- Journal :
- Journal of Engineering Materials and Technology
- Accession number :
- edsair.doi...........5204360091224b50f81b26b84863b3df
- Full Text :
- https://doi.org/10.1115/1.4051806